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Torus breakdown in noninvertible maps
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We propose a criterion for the destruction of a two-dimensional torus through the formation of an infinite set
of cusp points on the closed invariant curves defining the resonance torus. This mechanism is specific to
noninvertible maps. The cusp points arise when the tangent to the torus at the point of intersection with the
critical curveL0 coincides with the eigendirection corresponding to vanishing eigenvalue for the noninvertible
map. Further parameter changes lead typically to the generation of loops~self-intersections of the invariant
manifolds! followed by the transformation of the torus into a complex chaotic set.
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I. INTRODUCTION

Torus destruction through the loss of smoothness i
common phenomenon in systems that display quasiperio
ity and phase locking@1#. Together with the period doubling
and intermittency transitions, torus destruction represe
one of the classical routes to chaos in dissipative syste
and torus destruction has attracted considerable intere
connection with studies of the onset of turbulence@2#. Ex-
amples of torus destruction have also been described
coupled~or forced! oscillator systems in physics@3#, biology
@4,5#, and other fields of science@6,7#.

In their seminal paper on the breakdown of tw
dimensional tori, Afraimovich and Shilnikov@8# outlined
three possible scenarios for the destruction of a torus ari
as a Poincare´ section of a quasiperiodic flow. In all scenario
the starting point is a smooth torus in a resonance reg
where a stable periodic orbit~node! coexists with an unstable
orbit ~saddle cycle! of the same periodicity. The torus itself
defined as the closure of the unstable manifolds of the sa
cycle with the points of the saddle and stable node. In
scenario, the unstable manifolds from the saddle cycle s
to develop wrinkles as they approach the points of the sta
node. In this way, the torus becomes nondifferentiable
these points. As the system, under variation of a param
leaves the resonance zone, wrinkles and nonsmooth
spread along the invariant manifolds, and the torus break
into a fractal structure.

In another scenario, the unstable manifolds from
saddle cycle start to intersect the nonleading manifolds of
node. This produces an infinitely folded structure accumu
ing at the node points, where the torus again loses
smoothness. The torus is destructed when this folded st
ture makes contact with the stable manifold of the sa
saddle cycle in a homoclinic tangency. Finally, in the th
scenario, the stable node is transformed into a stable fo
and the unstable manifolds from the saddle cycle star
spiral around the focus points. The focus subsequently
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dergoes a Hopf bifurcation or a sequence of period d
blings. The consistency of these scenarios has been test
several numerical studies, e.g., by Curry and Yorke@9# and
by Aronsonet al. @10#. It has also been shown that toru
destruction can take place through a crisis involving the c
lision with its basin boundary@11#.

The torus destruction scenarios apply to smooth syst
and to systems that can be represented by two-dimensi
invertible maps. For nonsmooth systems, modifications a
in connection with the occurrence of so-called border co
sion bifurcations by which, for example, the transformati
of a node into a focus can occur abruptly@12#. The purpose
of this paper is to describe a mechanism that is specific
noninvertible maps where the invariant manifold defining t
torus can intersect itself. This gives rise to cusp points f
lowed by the transition to a characteristic loop structure t
cannot occur for invertible maps. We show how the se
intersection mechanism can operate in conjunction with
invertible mechanisms described by Afraimovich and Shil
kov and establish the criterion for the self-intersections of
invariant manifolds to emerge.

Noninvertible two-dimensional maps arise, for instan
in the study of chaotic synchronization@13#. Evidence of a
loop structure of the invariant manifold was also observed
Lorenz @14# in a study of computational chaos, by Anish
chenko et al. @15# in a study of the destruction of three
dimensional tori in a periodically forced system of tw
coupled logistic maps, and by Frouzakiset al. @16# in a study
of a model-reference, self-adapting control system. A p
liminary investigation of the mechanisms for torus destru
tion of noninvertible maps was also reported by Maistren
et al. @17#.

In the case of noninvertible mapsF:R2→R2, we find that
a new bifurcation can take place after the torus has bec
nonsmooth and before it is destroyed. Let us illustrate t
transition for a situation that corresponds to the first of
above mentioned scenarios~wrinkled route to destruction!.
As shown in Fig. 1~a!, the resonance torusTr loses its
smoothness at the pointPm of the stable node due to foldin
of the unstable manifoldWQ

(u) that connects the saddleQm to
the nodePm . The first folding@indicated by an asterisk in
©2003 The American Physical Society15-1
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Fig. 1~a!# is repeated indefinitely as the manifold approach
Pm , with the scales of the successive foldings decreasin
accordance with the eigenvalues ofPm .

If the map is noninvertible, the further evolution of th
unstable manifoldWQ

(u) can give rise to the appearance
cusp points@Fig. 1~b!# followed by the formation of loops
@Fig. 1~c!#. We find that the cusp points arise when the ta
gent of the unstable manifoldWQ

(u) at the point of intersec-
tion with the critical curveL0 coincides with the eigendirec
tion of vanishing eigenvalue forF. We conclude that there
can be two new characteristic shapes for a torus in the
of noninvertible maps: the cusp torusTc @Fig. 1~b!# and the
loop torusTl @Fig. 1~c!#. Note that the topological structur
of the loop torusTl is different from that of a circle. Indeed
Tl is no longer homeomorphic to a circle but endomorp
only to it. For the loop torusTl , the first intersection poin
OPTl must have two preimagesO1ÞO2 belonging toTl .
Therefore, the restrictionFT of the mapF to the torusTl is
also noninvertible. Moreover, we conclude that the transit
from Tr to Tl happens just at the moment when the mapFT
on the torusTr becomes noninvertible.

With further parameter variation, the loop torusTl can be
destroyed in accordance with scenarios analogous to tho
the invertible case.

II. CUSP AND LOOP TORI FOR NONINVERTIBLE MAPS

Let us illustrate the sequence of torus bifurcations
two-dimensional, noninvertible maps by means of the mo

xn115 f ~xn!1«@ f ~yn!2 f ~xn!#

yn115 f ~yn!1«@ f ~xn!2 f ~yn!#, ~1!

of two coupled logistic maps. Here the one-dimensional m
f 5 f a5ax(12x), xP@0,1#,0<a<4, with n50,1, . . . de-
noting a discrete time variable. The two-dimensional mapF
defined by Eq.~1! has two parameters, of whicha controls
the nonlinearity of the logistic map and« is the coupling
parameter.

FIG. 1. Schematic representation of the transition from a n
smooth resonance torusTr via a cusp torusTc to a loop torusTl .
WQ

(u) represents the unstable manifold from the saddle pointQm

toward the node pointPm . The first pointO of self-intersection of
WQ

(u) must have two different preimagesO1 andO2 both belonging
to Tl .
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The recurrent map system~1! as well as various generali
zations have been intensively studied in the past ye
@18,19#. In particular, maps of this type have been used in
study of chaotic synchronization@13# and clustering@20#. It
was observed in these studies that after the riddling
blowout bifurcations of the chaotic synchronous state,
dynamics of the coupled map system~1! typically develops
through an Andronov-Hopf bifurcation of an asymmetr
cycleP, giving rise to a stable invariant curve, i.e., a torusT
@Fig. 2~a!#, which then transforms into a resonance torusTr .
In Fig. 2~a!, the torusT does not yet intersect the critica
linesL0 of the mapF, while in Fig. 2~b! such an intersection
has occurred.

By a critical line L0 of the mapF, we mean a curve in
phase space where the Jacobian determinant vanishes,

uDFu50.

The concept of critical curves for two-dimensional noni
vertible maps and the role that the iterates of these cu
play in delineating the so-called absorbing area~and, hence,
the chaotic attractor! were introduced and extensively ap
plied by Gumowski and Mira@21# and by Miraet al. @22,23#.
Critical curves represent a generalization of the well-kno
concept of critical points for one-dimensional noninvertib
maps, i.e., points at which the map has vanishing slope
where the number of preimages suddenly changes.

-

FIG. 2. Phase portraits for the recurrent map system~1! with a
coupling parameter«51.285~a! and«51.300~b!. In both figures,
the nonlinearity parametera52.95. In ~b! the symmetric toriT
intersect the critical linesL0 at which the Jacobian determinant o
the map vanishes.
5-2
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TORUS BREAKDOWN IN NONINVERTIBLE MAPS PHYSICAL REVIEW E67, 046215 ~2003!
For the considered mapF of the form ~1!, the Jacobian
determinant vanishes at two perpendicular linesx50.5 and
y50.5. Hence, the critical curvesL0 are found as~see Fig.
2!

L05$x50.5%ø$y50.5%.

Moreover, while the position of the cycleP and the diameter
of the torusT depend ona and«, the critical lines are inde-
pendent of these parameters.

The resonant torusTr in Fig. 2~b!, although it intersects
the critical lineL0, is still associated with an invertible dy
namics: the mappingFT along the torusT is one to one. With
further parameter variation,FT becomes noninvertible. Thi
happens when the tangent to the torusT in the point of in-
tersection with the critical lineL0 coincides with the direc-
tion of vanishing eigenvalue forF. Due to the symmetry ofF
with respect to the diagonal, we need to consider only
torus T @e.g., the right-hand side of Fig. 2~b!#. This torus
intersects the horizontal part ofL0. It is easy to show that the
eigenvectors corresponding to the zero eigenvalue of
mapF at the critical lineL0 are vertical. Hence, we conclud
that cusp points on the torus arise~the cusp torusTc appears!
when the tangent to the torus at the point of intersection w
L0 becomes vertical.

Figure 3 shows the main stages in this transformati
Here,a53.86 while the coupling parameter is changed fro
«50.904 48 ~a! over «50.904 52 ~b! to «50.904 55 ~c!.
With these parameter values, we are operating in a reson
zone with a stable period-15 node and a saddle cycle of
same periodicity. This region of operation was chosen
cause the pointP of the node falls very close to the critica
line L0. This allows us to follow the loop formation in rea
~i.e., undistorted! scale.

As before, WQ
(u) denotes the unstable manifold of th

saddle cycle.uW represents the normal to the critical lineL0

andkW is the tangent toWQ
(u) in the point of intersection be

tweenL0 andWQ
(u) . In Fig. 3~a!, WQ

(u) is folded such that the
torus is already nonsmooth at the pointP. However,WQ

(u)

intersectsL0 in such a direction that the dynamics alongWQ
(u)

is invertible. In Fig. 3~b!, kW has become vertical and no
coincides with the direction of vanishing eigenvalue forF.
This is the moment of formation for the cusp torusTc . Now
the unstable manifold has acquired an infinite number
nonsmooth points. Finally, in Fig. 3~c!, the anglea has
changed sign, the dynamics alongWQ

(u) is no longer invert-
ible, and an infinite sequence of loops has developed a
the manifold. Hence, we have observed how the transfor
tion proceeds through the following steps:

Tr⇒Tcusp⇒Tloop . ~2!

Figure 4 illustrates the bifurcation sequence in the c
when the pointP is a focus, i.e., the resonance torusTr has
lost its smoothness with the eigenvalues ofP becoming com-
plex.

We are still considering a resonance zone with a period
cycle. Fora53.867 85 and«50.903 25@Fig. 4~a!#, the torus
04621
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is smooth, except in the points of the focus. At the mom
when the unstable manifoldWQ

(u) intersects the critical line
L0 perpendicularly, the unstable manifold develops an in
nite set of cusp points@Fig. 4~b!#, and when the anglea
betweenuW andkW changes sign, a loop torusTl develops@Fig.
4~c!#.

III. TRANSITION TO CHAOS

As noted in the Introduction, torus breakdown represe
one of the three classic routes to chaos in dissipative
tems. Let us therefore follow the development of a loop to
as the system leaves the resonance zone.

To illustrate this transition, we have chosen to conside
somewhat different region of parameter space where we
a resonance torus with period-5 dynamics. The reason
this choice is that, in the examples we will consider, t
transition to chaos maintains the looplike structure who
mechanism of creation was explained in Sec. II.

Figure 5 provides an overview of the relevant part of t
parameter space. In the lower left corner~gray shaded re-
gion!, the two-dimensional map~1! displays a stable asym
metric fixed point~actually, of course, two mutually symme
ric fixed points as illustrated in Fig. 2!. At the transition to
the unshaded zone, the fixed point undergoes an Andron
Hopf bifurcation for maps, and for parameter combinatio

FIG. 3. Transition from a nonsmooth resonance torusTr via a
cusp torusTc to a loop torusTl for the case when the stable cycle
a node. a53.86. The coupling parameter is changed from«
50.904 48~a! over «50.904 52~b! to «50.904 55~c!. The cusp
torusTc arises when the unstable manifoldWQ

(u) intersects the criti-
cal line L0 perpendicularly.
5-3
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to the right of this bifurcation curve, we observe quasipe
odic dynamics~on an ergodic torus! followed by resonant
behavior and chaos. Curves 1 and 2 delineate the regio
period-5 resonant dynamics. In the lower part of this tong
~below the doted curve!, the stable period-5 cycle at the toru
is a node. Above the dotted curve, the period-5 cycle i
focus. Finally, the focus loses stability in an Andronov-Ho
bifurcation at curve 3. Above this curve, another region
quasiperiodic dynamics can be found as well as resona
zones, including a region with period-15 dynamics.

Figure 6 demonstrates the rapid variation of the larg
Lyapunov exponentl1 that takes place as the system leav
the period-5 resonance zone, starting from pointA ~see Fig.
5! at «51.54 anda52.766 in the direction of the arrow. T

FIG. 4. Transition from a nonsmooth resonance torusTr via a
cusp torusTc to a loop torusTl for the case when the stable cycle
a focus. Herea53.867 85 and«50.903 25~a!, a53.867 90 and
«50.903 25~b!, a53.868 00 and«50.903 45~c!.
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the left in the figure, the coupled map system display
resonance torus with loops andl1 is negative. Whena is
increased, transitions between periodic (l1,0), quasiperi-
odic (l150) and chaotic (l1.0) dynamics occur extremely
fast. The second Lyapunov exponentl2 remains negative.

Figure 7 illustrates the changes of the stationary solut
to Eq. ~1! that take place as the system leaves the resona
tongue in the direction of the arrow from pointA in Fig. 5. In
Fig. 7~a!, we still have the characteristic structure of a lo
torus. As before,P represents the stable node, andWQ

(u) is the
unstable manifold that approachesP from the saddle cycle
~not shown!. Here a52.766 and«51.54. In Fig. 7~b!, a
52.7738 and«51.533 85. It is interesting to note that ho
the overall structure of the loop torus is maintained as
loop is broken and the system becomes chaotic. For the
rameters of this figure, the Lyapunov exponents arel1
>0.0145 andl2>20.028. Hence, the Lyapunov dimensio
DL>1.52. In Fig. 7~c!, the system has moved a little furthe
out of the resonance tongue. Witha52.774 and «
51.5339, we now havel1>0.013, l2>20.021, andDL
>1.62. Initial conditions are always chosen in a neighb
hood ofCA.

FIG. 5. Two-dimensional bifurcation diagram for the coupl
map system~1!. The curves 1 and 2 delineate a region with period
resonance behavior. At the dotted curve, the stable period-5 cyc
transformed from a node into a focus. Curve 3 is an Andronov-H
bifurcation curve for the period-5 orbit.

FIG. 6. Variation of the largest Lyapunov exponentl1 with the
nonlinearity parametera. The coupled map system leaves th
period-5 Arnol’d tongue ata>2.7662. Note the extremely rapi
transition between periodic (l1,0), quasiperiodic (l150), and
chaotic (l1.0) dynamics immediately outside the tongue.«
51.54.
5-4
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TORUS BREAKDOWN IN NONINVERTIBLE MAPS PHYSICAL REVIEW E67, 046215 ~2003!
Figure 8 presents a picture of the full chaotic attractorCA
for a52.774 and«51.535. Although the Lyapunov dimen
sion now isDL>2.0, one can easily observe the signatu
both of the original period-5 node and of the self-intersect
manifolds of the resonance torus. Figure 8~b! is a magnifica-
tion of the part of the chaotic attractor, corresponding to
region delineated by the dotted square in Fig. 8~a!.

IV. CONCLUSION

Gumowski and Mira@21# and Mira et al. @22,23# have
developed the concept of critical curves for two-dimensio
noninvertible maps and discussed the bifurcations of inv
ant manifolds in connection with their self-intersections. W
used these ideas to establish the precise criterion for the
structure to arise and to illustrate how the loop format
mechanism works in conjunction with the class
Afraimovich-Shilnikov scenarios of torus breakdown. It w
possible to clearly distinguish the processes that are as
ated with the lack of invertibility for the map. In particula
an additional bifurcation~in which the closed invariant curv
develops an infinite set of cusp points and then loops! could

FIG. 7. Transition from loop torusTl to chaotic attractorCA as
the system passes out through the period-5 Arnol’d tongue in
direction of the arrow from pointA of Fig. 5. a52.7660,«51.54
~a!, a52.7738, «51.53385 ~b!, and a52.7740, «51.5339 ~c!.
Note how the characteristic loop structure is maintained in the
tial stages of the torus breakdown.
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be identified between the transition in which the invaria
curve becomes nonsmooth and its final breakdown.

To simplify the discussion, we considered a system of t
nonlinearly coupled logistic map. Here, the critical curv
are two straight lines, perpendicular to one another. In
general case, the mappingF:R2→R2 may be represented a

S x

yD °S u~x,y!

v~x,y!
D ,

with uPC1 and vPC1. The functionF has partial deriva-
tives ux8(x,y), uy8(x,y), vx8(x,y), andvy8(x,y) in all points.
However, ifF is noninvertible, it has a direction of vanishin
derivative along a critical curvesL0 where the Jacobian de
terminantDF50.

When the invariant manifold of a saddle cycle crosses
critical curve in the direction of vanishing derivative forF,
an infinite set of cusp points arise. As the parameters of
system are changed, the cusp points develop typically
loop points, and the closed invariant curve will no longer
homeomorphic to a circle.

We have demonstrated how this loop structure arises
connection with two of the Afraimovich-Shilnikov scenario
i.e., in connection with the developments of both wrinkl
and spirals on the invariant manifold. We have also sho
how this loop structure partly survives as the torus starts
break up.
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FIG. 8. Fully formed chaotic attractorCA outside the period-5
Arnol’d tongue~a!. The Lyapunov dimension is nowDL>2.0. One
can still observe the signatures of the period-5 resonance dyna
and of the self-intersecting manifolds. Magnification of part of~a!
~b!. Parameter values area52.774,«51.535.
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